Production of orotic acid by a Klura3Δ mutant of Kluyveromyces lactis.

نویسندگان

  • Nuno Carvalho
  • Eduardo Coelho
  • Luís Gales
  • Vítor Costa
  • José António Teixeira
  • Pedro Moradas-Ferreira
چکیده

We demonstrated that a Klura3Δ, mutant of the yeast Kluyveromyces lactis is able to produce and secrete into the growth medium considerable amounts of orotic acid. Using yeast extract-peptone-glucose (YPD) based media we optimized production conditions in flask and bioreactor cultures. With cells grown in YPD 5% glucose medium, the best production in flask was obtained with a 1:12.5 ratio for flask: culture volume, 180 rpm, 28°C and 200 mM MOPS for pH stabilization at neutral values (initial culture pH at 8.0). The best production in a 2 L bioreactor was achieved at 500 rpm with 1 vvm aeration, 28°C and pH 7.0. Under these optimum conditions, similar rates of orotic acid production were obtained and maximum concentration achieved after 96 h was 6.7 g/L in flask and bioreactor cultures. These results revealed an excellent reproducibility between both systems and provided evidence for the biotechnological potential of Klura3Δ strain to produce orotic acid since the amounts obtained are comparable to the production in flask using a similar mutant of the industrially valuable Corynebacterium glutamicum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterologous products from the yeast Kluyveromyces lactis: exploitation of KlPDC1, a single-gene based system

Heterologous products are frequent applications of microbial technology. Depending on the product, the host-vector system has to be chosen in order to fulfill process requirements. This short review summarizes published and unpublished results obtained for the production of heterologous metabolites and proteins from a single host, the yeast Kluyveromyces lactis, and by means of tools – promoter...

متن کامل

Improved bioethanol production in an engineered Kluyveromyces lactis strain shifted from respiratory to fermentative metabolism by deletion of NDI1

In this paper, we report the metabolic engineering of the respiratory yeast Kluyveromyces lactis by construction and characterization of a null mutant (Δklndi1) in the single gene encoding a mitochondrial alternative internal dehydrogenase. Isolated mitochondria of the Δklndi1 mutant show unaffected rate of oxidation of exogenous NADH, but no oxidation of matrix NADH; this confirms that KlNdi1p...

متن کامل

Improved production of heterologous proteins by a glucose repression-defective mutant of Kluyveromyces lactis.

The secreted production of heterologous proteins in Kluyveromyces lactis was studied. A glucoamylase (GAA) from the yeast Arxula adeninivorans was used as a reporter protein for the study of the secretion efficiencies of several wild-type and mutant strains of K. lactis. The expression of the reporter protein was placed under the control of the strong promoter of the glyceraldehyde-3-phosphate ...

متن کامل

Amphotericin B resistance and membrane fluidity in Kluyveromyces lactis strains.

The membrane fluidity of reduced-amphotericin B (AmB)-sensitivity Kluyveromyces lactis mutant strain is higher than that of the wild-type K. lactis strain. After culture of the K. lactis and K. lactis mutant cells in the presence of subinhibitory doses of AmB (10 and 125 mg/liter, respectively), the plasma membranes of both yeast strains also showed a higher fluidity than did those of control c...

متن کامل

A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis

Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioscience and bioengineering

دوره 121 6  شماره 

صفحات  -

تاریخ انتشار 2016